nullity$54016$ - definizione. Che cos'è nullity$54016$
Diclib.com
Dizionario ChatGPT
Inserisci una parola o una frase in qualsiasi lingua 👆
Lingua:

Traduzione e analisi delle parole tramite l'intelligenza artificiale ChatGPT

In questa pagina puoi ottenere un'analisi dettagliata di una parola o frase, prodotta utilizzando la migliore tecnologia di intelligenza artificiale fino ad oggi:

  • come viene usata la parola
  • frequenza di utilizzo
  • è usato più spesso nel discorso orale o scritto
  • opzioni di traduzione delle parole
  • esempi di utilizzo (varie frasi con traduzione)
  • etimologia

Cosa (chi) è nullity$54016$ - definizione

THEOREM
Rank theorem; Rank nullity theorem; Rank-nullity theorem; Rank-nullity; Rank nullity
  • Rank–nullity theorem

Nullity         
WIKIMEDIA DISAMBIGUATION PAGE
Nullity (disambiguation)
·noun That which is null.
II. Nullity ·noun The quality or state of being null; nothingness; want of efficacy or force.
III. Nullity ·noun Nonexistence; as, a decree of nullity of marriage is a decree that no legal marriage exists.
nullity         
WIKIMEDIA DISAMBIGUATION PAGE
Nullity (disambiguation)
n.
1.
Non-existence, nonentity, nihility, nothingness, insignificance.
2.
Nothing, nonentity.
3.
Invalidity, inefficacy.
Declaration of nullity         
DECLARATION OF NULLITY OF A MARRIAGE BY AN ECCLESIASTICAL TRIBUNAL
Declaration of Nullity; Annulment (Catholic Church)
In the Catholic Church, a declaration of nullity, commonly called an annulment and less commonly a decree of nullity,Annulment/Decree of Nullity, EWTN.com, accessed 9/11/2015 and by its detractors, a "Catholic divorce", is an ecclesiastical tribunal determination and judgment that a marriage was invalidly contracted or, less frequently, a judgment that ordination was invalidly conferred.

Wikipedia

Rank–nullity theorem

The rank–nullity theorem is a theorem in linear algebra, which asserts

  1. of a matrix M that its rank + its nullity = the number of columns, and
  2. of a linear transformation that the dimension of the domain is the sum of the transformation's rank (the dimension of its image) and its nullity (the dimension of its kernel).